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A relationship between the dipolar and the chemical-shift scaling factors of cyclic radio-frequency irra-
diation schemes is introduced. This scaling factor theorem is derived analytically using Average Hamilto-
nian Theory, and its validity is illustrated numerically with homonuclear dipolar decoupling sequences
generated randomly, and with the analysis of existing sequences. While derived for a static sample,
the theorem provides insight into homonuclear dipolar decoupling schemes that combine radio-fre-
quency irradiation with fast rotation of the sample at the magic-angle with respect to the static magnetic
field.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction peaks and the reduction of their separation in frequency space.
Hydrogen is the most abundant element in the universe, and its
ubiquity makes it a potentially powerful probe for a large range of
systems. Because of its high natural abundance and high magneto-
gyric ratio, which lead to a large equilibrium polarisation, the
hydrogen nucleus should be the nucleus of choice for solid-state
NMR spectroscopy, as it is in practice in solution-state NMR. In
the solid state, however, the very same properties of protons also
lead to the existence of strong internuclear couplings, which make
it difficult to obtain high-resolution 1H NMR spectra.

Various radio-frequency (rf) irradiation schemes have been
developed to remove the effect of homonuclear dipolar interac-
tions in the NMR spectroscopy of solid samples. Such pulse se-
quences were initially developed with the aim of achieving, in
either a step-wise [1] or a continuous manner [2], a rotation anal-
ogous to that achieved by mechanically spinning the sample at the
magic-angle [3,4]. These original schemes have later been refined
to achieve improved line-narrowing [5–17].

Radio-frequency homonuclear dipolar decoupling is, however, a
double edged device. In the case of non-rotating samples, it cannot
achieve any reduction of the effective magnitude of the dipolar
interaction without also reducing the effective chemical shift inter-
action. More precisely, any rf irradiation scheme yields an apparent
precession frequency for the nuclei which is smaller than their
intrinsic precession frequency by a so-called chemical-shift scaling
factor k. This process collapses the chemical information of interest
into a reduced spectral width, and the net effect of decoupling se-
quences is thus a subtle interplay between the narrowing of the
ll rights reserved.

sley).
These considerations are well known, and have been studied
experimentally; it is in particular generally acknowledged that a
pulse sequence that achieves perfect decoupling for a static sample
cannot have a chemical-shift scaling factor larger than 1=

ffiffiffi
3
p

[1,9,18,19]. However, no quantitative and rigorously derived state-
ments, have been made on this subject.

Here we introduce a scaling factor theorem for homonuclear
dipolar decoupling in solid-state NMR spectroscopy. The theorem
consists in a relationship between the dipolar scaling factor and
the chemical-shift scaling factor, valid for any cyclic rf-irradiation
scheme applied to a static solid. We give a derivation of the theo-
rem based on Average Hamiltonian Theory, and we illustrate its
validity with numerical calculations of effective Hamiltonians for
randomly generated pulse sequences. We also discuss the conse-
quences of the theorem for the design of homonuclear dipolar
decoupling schemes that combine pulsed rf-irradiation with rota-
tion at the magic-angle.

2. The scaling factor theorem

In this section, the dipolar and chemical-shift scaling factors are
first defined, and the scaling factor theorem is then stated. An ana-
lytical derivation based on Average Hamiltonian Theory is given in
Section 3, and numerical simulations with randomly generated
pulse sequences are described and discussed in Section 4.

2.1. Chemical-shift and dipolar scaling factors

In the limit of high magnetic field and for a system of homonu-
clear spins I = 1/2 coupled by the dipolar interaction, the internal
rotating-frame secular Hamiltonian HS is
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HS ¼
X
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CSTi
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X
j>i

xij
DTij

20

 !
; ð1Þ

where the sums are over all spins i and j in the system, the first term
is the chemical shift Hamiltonian HCS for spin i, with an offset xi

CS

with respect to the rf irradiation frequency, and the second term
is the dipolar Hamiltonian HD with xij

D the dipolar coupling between
spins i and j. Irreducible spherical tensors are used to express spin
Hamiltonians, and their relationship to Cartesian operators are re-
called in Table 1. Here we consider systems of protons, which in
the solid state form strongly dipolar-coupled networks.

To act on the spin Hamiltonian, a time-dependent radio-fre-
quency field is applied to the sample. The total spin Hamiltonian
is therefore:

HðtÞ ¼ HS þ HRFðtÞ: ð2Þ

For a radio-frequency interaction that is both periodic and cyc-
lic, the time evolution of the system over one cycle of radio-fre-
quency irradiation can be described by an effective HamiltonianeH or average Hamiltonian H, the detailed properties and conditions
of existence of which will be discussed below. eH takes the general
form:

eH ¼X
i

xi
CS

X1

l¼�1

Ti
1lkCS

1l þ
X
j>i

xij
D

X2

l¼�2
Tij

2lkD
2l

 !
: ð3Þ

The chemical-shift scaling factor kCS is defined as the ratio be-
tween the norm of the linear Hamiltonian under radio-frequency
irradiation and without radio-frequency irradiation,

kCS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1

l¼�1
kCS

1l

��� ���2r
: ð4Þ

The dipolar scaling factor kD is defined in the same way for the
second-rank part of the Hamiltonian,

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

l¼�2
kD

2l

��� ���2r
: ð5Þ

In the context of homonuclear dipolar decoupling, the dipolar
scaling factor characterises the magnitude of the residual dipolar
interactions; the smaller the dipolar scaling factor, the better the
line-narrowing efficiency of the decoupling sequence. As homonu-
clear dipolar decoupling aims at minimising kD while maximising
kCS, any relationship between the two imposes constraints on the
development of decoupling sequences.

2.2. Theorem

For a static system of homonuclear spins I = 1/2 coupled by the
dipolar interaction and submitted to a cyclic radio-frequency irra-
diation, the chemical-shift and dipolar scaling factors satisfy
Table 1
Relationship between the irreducible spherical components and the Cartesian
components of rank-one and rank-two spin operators.

Cartesian representation Spherical components

I=(Ix, Iy, Iz) T10 = Iz

T1�1 ¼ � 1ffiffi
2
p ðIx � iIyÞ ¼ � 1ffiffi

2
p I�

T ¼
IxSx IxSy IxSz

IySx IySy IySz

IzSx IzSy IzSz

0@ 1A T20 ¼ 1ffiffi
6
p 3IzSz � I

!
� S
!� �

T2�1 ¼ � 1
2 IzS� þ I�Szð Þ

T2�2 ¼ 1
2 I�S�

T10 ¼ � 1
2
ffiffi
2
p ðIþS� � I�SþÞ

T1�1 ¼ 1
2 IzS� � I�Szð Þ

T00 ¼ � 1ffiffi
3
p IzSz þ IxSx þ IySy
� �
kCS�� ��2 6 1
3

2 kD�� ��þ 1
� �

: ð6Þ

The theorem states that the maximum value allowed for the
chemical-shift scaling factor depends on the dipolar scaling factor.
The allowed values of the dipolar and chemical-shift scaling factors
can be represented graphically as in Fig. 1, which shows the limit
imposed on rf-decoupling sequences. In particular, perfect decou-
pling, which corresponds to kD ¼ 0, is a special case of Eq. (6)
and yields the ‘quasi-static’ maximum of the chemical-shift scaling
factor of 1=

ffiffiffi
3
p

.

3. Analytical derivation of the theorem

3.1. Average Hamiltonian

The following derivation relies on average Hamiltonian theory
[20], and will be conducted in the interaction frame of the applied
rf field. The radio-frequency propagator URF(t) is defined as

d
dt

URFðtÞð Þ ¼ �iHRFðtÞURFðtÞ: ð7Þ

The Hamiltonian of the system Hs, in the rf interaction frame,
transforms to

H0ðtÞ ¼ U�1
RF ðtÞHSURFðtÞ: ð8Þ

If the radio-frequency irradiation is cyclic with a cycle time sc,
such that URF(nsc) = 1, "n, the rf interaction frame and the rotating
frame coincide at times nsc [20], and the evolution of the system
under stroboscopic observation (at times nsc) will be correctly de-
scribed in either of the two frames. An average Hamiltonian that
describes the evolution over a cycle can then be defined; the
first-order average Hamiltonian is:

H1ðscÞ ¼
1
sc

Z sc

0
dt0 U�1

RF ðt0ÞHSURFðt0Þ: ð9Þ

In order to avoid cumbersome notation, in the following we
consider the chemical shift for a single spin, i, and the coupling
with one other spin, j. The reasoning can be extended to more
spins, as will be shown in Section 3.4. When only these interactions
are included, the first-order average Hamiltonian [20] becomes

H1ðscÞ ¼
1
sc

Z sc

0
dt0U�1

RF ðt0ÞðHCS þ HDÞURFðt0Þ: ð10Þ

As the radio-frequency field induces a rotation of the spins, its
propagator can be expressed as:

URFðtÞ ¼ R XRFðtÞð Þ; ð11Þ
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Fig. 1. The dark area shows the allowed values of the chemical-shift and dipolar
scaling factors for cyclic rf irradiation applied to a static sample.
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where XRF(t) = {aRF(t), bRF(t), cRF(t)} is the set of time-dependent Eu-
ler angles that define the rotation induced by the radio-frequency
field: R(XRF(t)) = Rz(aRF(t))Ry(bRF(t))Rz(cRF(t)).

As the rank of an operator is preserved by the rotation R(XRF(t)),
the first-order average Hamiltonian for the spin i under radio-fre-
quency irradiation, as expressed in Eq. (10) can also be written as:

H1ðscÞ ¼ xCS

X1

l¼�1

T1lkCS
1l þxD

X2

l¼�2

T2lkD
2l; ð12Þ

where the terms kCS
1l are the components of the chemical-shift

scaling factor and the terms kD
2l are the components of the dipolar

scaling factor. In order to derive the relationship between the
chemical-shift and the dipolar scaling factors, it is convenient to
perform the additional transformation described in the following
section.

3.2. Tilted average Hamiltonian

A rotation can be applied, that simplifies the expression of the
average Hamiltonian for the spin i, such that the first-rank ele-
ments only have a component on T10, as seen in Fig. 2,

�H1;TðscÞ ¼ xCSk
CST10 þxD

X2

l¼�2

kD;T
2l T2l: ð13Þ

This corresponds to a rotation defined by a set of time-indepen-
dent Euler angles, noted XT in the following discussion, and de-
fined from the orientation of the average Hamiltonian at time sc.
The physical idea is to tilt the observation frame to a position such
that the average Hamiltonian at time sc will only have a compo-
nent on T10.

We thus consider the combined rotation from the rotating
frame to the tilted frame,

RðXðt0ÞÞ ¼ RðXRFðt0ÞÞRðXTÞ; ð14Þ

X(t) = {a(t), b(t), c(t)} describes the consecutive rotations under the
radio-frequency interaction frame transformation and the transfor-
mation to the tilted Hamiltonian. The first-order tilted average
Hamiltonian for spin i, using this overall rotation, is then expressed
using Wigner rotation matrices [21]:

H1;TðscÞ ¼
1
sc

Z sc

0
dt0R Xðt0Þð Þ�1 xCST10 þxDT20ð ÞRðXðt0ÞÞ

¼ xCS

X1

l¼�1

T1l
1
sc

Z sc

0
D1

l0 Xðt0Þ�1
� 	

dt0

þxD

X2

l¼�2

T2l
1
sc

Z sc

0
D2

l0 Xðt0Þ�1
� 	

dt0; ð15Þ

where the terms Dl
m0mðXðt0Þ

�1Þ are the Wigner matrices associated
with the Euler angles X(t0)�1: Dl

m0mðXðt0Þ
�1Þ ¼ expð�im0aÞdl

l0

ð�bÞ expð�imcÞ
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Fig. 2. Average Hamiltonian in the subspace of rank-one irreducible tensors. (a) The thr
component on T i

10 is non-zero.
From the definition of the tilted average Hamiltonian (Eq. (13)),
�H1;TðscÞ only has a component on T10. Therefore the integralsR sc

0 D1
10ðXðt0Þ

�1Þdt0 and
R sc

0 D1
�10ðXðt0Þ

�1Þdt0 are zero, and the tilted
average Hamiltonian is

�H1;TðscÞ ¼ xCST10
1
sc

Z sc

0
D1

00ðXðt0Þ
�1Þdt0

þxD

X2

l¼�2

T2l
1
sc

Z sc

0
D2

l0ðXðt0Þ
�1Þdt0

¼ xCST10k
CS þxD

X2

l¼�2

T2lkD;T
2l : ð16Þ
3.3. Relationship between the chemical-shift and dipolar scaling
factors

The aim is to determine the relationship between kCS and kD. We
consider in particular the relationship between kCS and kD;T

20 in the
tilted frame as a function of the Euler angle X(t) = {a(t), b(t), c(t)},

kCS ¼ 1
sc

Z sc

0
D1

00ðXðt0Þ
�1Þdt0

¼ 1
sc

Z sc

0
expð�i0aðtÞÞd1

00ð�bðt0ÞÞ expð�i0cðtÞÞdt0

¼ 1
sc

Z sc

0
cosðbðt0ÞÞdt0; ð17Þ

kD;T
20 ¼

1
sc

Z sc

0
D2

00ðXðt0Þ
�1Þdt0 ¼ 1

sc

Z sc

0
d2

00ð�bðt0ÞÞdt0

¼ 1
sc

Z sc

0

1
2
½3 cos2ðbðt0ÞÞ � 1�dt0:

Using the Cauchy–Schwarz inequality [22], the maximum value
of the scaling factor can be determined,

1
sc

Z sc

0
ðcosðbðt0ÞÞ � 1Þdt0

���� ����2 6 1
sc

Z sc

0
cos2ðbðt0ÞÞdt0 � 1

sc

�
Z sc

0
1dt0

6
1
3

2 kD;T
20

�� ��þ 1
� 	

; ð18Þ

kCS�� ��2 6 1
3

2 kD;T
20

�� ��þ 1
� 	

: ð19Þ

The total dipolar scaling factor kD is defined as

kD�� ��2 ¼ X2

l¼�2

kD;T
2l

��� ���2 > kD;T
20

�� ��2: ð20Þ

Therefore, the relationship between the chemical-shift scaling
factor and the total dipolar scaling factor can be written as
T
10

T1-1
T

11

H1,T(τc)

λCS

(b)

ee components in the interaction frame. (b) The tilted Hamiltonian, where only the
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kCS�� ��2 6 1
3

2 kD
20

�� ��þ 1
� �

6
1
3

2 kDj j þ 1ð Þ: ð21Þ

which is the desired result.
3.4. Extension to more spins

When considering more than one dipolar coupling with the spin
i, the average Hamiltonian becomes

H1ðscÞ ¼ xCS

X1

l¼�1

T1lkCS
1l þ

X
j

xj
D

X2

l¼�2

Tij
2lkD;ij

2l : ð22Þ

The Euler angle XT used to align the rank-one part of the aver-
age Hamiltonian with T10 is independent of the dipolar couplings,
as well as of the radio-frequency interaction frame transformation.
Thus, the overall transformation X(t) = {a(t), b(t), c(t)} is the same
for all the rank-two tensors. Consequently, the inequality is valid
for each of the dipolar couplings to spin i:

kCSj j2 6 1
3

2 kD;ij
20

��� ���þ 1
� 	

6
1
3

2 kD;ij
��� ���þ 1

� 	
; 8j: ð23Þ

In this derivation, no assumption has been made about spin i.
For a spin k with a different offset, the orientation of the average
Hamiltonian in the radio-frequency interaction frame and conse-
quently the overall rotation Xk(t) = {ak(t), bk(t), ck(t)} is slightly dif-
ferent. The rank-one and rank-two scaling factors for spin k are,
however, both expressed as a function of the angle bk(t), and thus
also verify the scaling factor theorem.
4. Numerical verification of the theorem for randomly
generated decoupling sequences

The scaling factor theorem can be illustrated by numerical stud-
ies of randomly generated pulse sequences. To complement the
analytical derivation of the theorem, we have carried out numeri-
cal calculations of the chemical-shift and dipolar scaling factors for
a static two-spin system.
4.1. The DUMBO framework

The modulation schemes used in the DUMBO framework [13]
provide a convenient way to explore the propagator space spanned
by rf-decoupling schemes, since the radio-frequency field has a
constant amplitude xRF and is phase modulated according to the
coefficients of a Fourier series. Although not exhaustive, a search
performed with sequences using randomly generated Fourier coef-
ficients explores a large fraction of propagator space. It is impor-
tant to note that the validity of the scaling factor theorem is not
limited to pulse sequences that can be expressed within this
framework.

In our calculations, the phase modulation is thus specified by a
Fourier series over one decoupling cycle sc:

uðtÞ¼ a0þ
P6
n¼1

an cos n 2p
ðsc=2Þt

� 	
þbn sin n 2p

ðsc=2Þt
� 	� 	

; 0< t< sc
2

uðtÞ¼pþuðsc� tÞ; sc
2 < t< sc

8><>: ;

ð24Þ

where sc is the duration of one cycle, chosen to be sc � 3TRF = 6p/
xRF. The second half of the phase modulation is fully determined
from the first half by a p-shift and time reversal, in order to ensure
that the radio-frequency Hamiltonian is cyclic and has time-rever-
sal symmetry [20].
4.2. Calculation of effective Hamiltonians

For a system evolving under the time-dependent Hamiltonian
H, the density matrix operator r(t) at time t is given by

rðtÞ ¼ Uðt;0Þrð0ÞU�1ðt;0Þ; ð25Þ

where

Uðt;0Þ ¼ T exp
Z t

0
�iHðt0Þdt0

� �
; ð26Þ

and where r(0) is the initial density matrix. For a time-periodic
Hamiltonian of period sc, it is of interest to define an effective Ham-
iltonian, Heff, as

Uðsc;0Þ ¼ exp �iHeffscð Þ: ð27Þ

The effective Hamiltonian describes the evolution over one per-
iod of the time-dependent interaction; it can be calculated by tak-
ing the logarithm of the propagator U(sc,0), which can itself be
obtained according to Eq. (26). Using the expression given in Eq.
(2) for the Hamiltonian, the propagator over one cycle can be cal-
culated numerically as:

UðscÞ ¼
YN

j¼1

exp �i½HCS þ HD þ HRFðjÞ�Dtð Þ; ð28Þ

where Dt is the length of each of the N steps in the phase modula-
tion and HRF(j) is the value of the radio-frequency Hamiltonian for
step j of the digitized phase modulation. The effective Hamiltonian
is then derived numerically through diagonalisation of the effective
propagator [23]. It should be noted that the step-by-step calculation
of the propagator is particularly pertinent, since it corresponds to
the step-wise manner used to implement the radio-frequency phase
modulation on the spectrometer. This approach for the calculation
of effective Hamiltonians was notably used for the development
of the DUMBO-1 pulse sequence [13].
4.3. Chemical-shift and dipolar scaling factors

Once an effective Hamiltonian has been obtained, the dipolar
and chemical-shift scaling factors can be calculated (both proce-
dures are described in Supplementary Information). Fig. 3 shows
the chemical-shift scaling factor plotted as a function of the dipolar
scaling factor, for around 2 million sequences generated randomly
within the DUMBO framework, i.e., according to Eq. (24) with ran-
dom values for the Fourier coefficients an and bn. The theoretical
maximum of the chemical-shift scaling factor as a function of the
dipolar scaling factor, given by Eq. (23), is plotted as a solid red
line. Again, it can be seen that a larger value of the chemical-shift
scaling factor can only be accessed at the cost of a reduced line-
narrowing efficiency. In particular, all sequences with a dipolar
scaling factor less than 0.04 have a scaling factor less than the ‘sta-
tic’ maximum of 1=

ffiffiffi
3
p

, as shown by the red dashed line.
The sequences actually developed for good homonuclear dipo-

lar decoupling in static solids can be analysed in the context of
the scaling factor theorem. The WAHUHA sequence and LG se-
quence and their subsequent refinements, which achieve a cubic
symmetry in a step-wise or continuous manner, yield a dipolar
scaling factor close to zero, and a chemical-shift scaling factor of
1=

ffiffiffi
3
p

or less. The DUMBO-1 sequence [13], which was designed
to have the smallest possible dipolar scaling factor in simulations
performed with a static sample has a dipolar scaling factor of less
than 0.03 and a chemical-shift scaling factor close to the maximum
value of 1=

ffiffiffi
3
p

.



Fig. 3. (a) Calculated CS scaling factors as a function of the dipolar scaling factor for
2 million rf schemes defined using random Fourier coefficients, and for FSLG,
PMLGx

p , PMLG �xx
mm , WAHUHA, BLEW-12, DUMBO-1, eDUMBO-122, PLUS-1, PLUS-large

and no radio-frequency irradiation. (b) Expansion of (a), showing the region of the
best dipolar scaling factor. The red line shows the theoretical maximum for the CS
scaling factor. Scaling factors were calculated using a home-written MATLAB�

(2008a, The MathWorks, Natick, MA) routine for two spins under static conditions,
using a dipolar coupling xD/2p of 10 kHz (as defined in Eq. (1)), a radio-frequency
field amplitude xRF/2p of 170 kHz and relative resonance offsets of 3.5 kHz. The
other parameters were chosen to match the experimental implementation for each
decoupling sequence. The DUMBO-1, eDUMBO-122, PLUS-1 and PLUS-large
sequences were calculated for a cycle time sc of 20 ls, with the phase modulation
being implemented experimentally using 200 steps of 100 ns. BLEW-12, PMLGx

p and
PMLG �xx

mm were implemented with 12, 10 and 20 steps respectively and the delays
between pulses for WAHUHA were 6 ls. FSLG was implemented with offsets of 121
and 124.5 kHz. All scripts are given in Supplementary Information.
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5. Consequences for spinning solids

The theorem given here corresponds to the case of a static sam-
ple, for which the internal interactions are time-independent. For
homonuclear dipolar decoupling, its validity can be extended to
the so-called quasi-static regime, where the cycle duration of the
rf pulse sequence is short compared to the sample rotation period.
For experiments performed at higher spinning frequencies, MAS
can significantly affect dipolar interactions. As first suggested by
Spiess and coworkers [11,24,25], it then becomes possible to use
pulse sequences that yield a non-zero dipolar scaling factor, and
a chemical-shift scaling factor larger than 1=

ffiffiffi
3
p

, i.e., to explore
the region of Fig. 3 located further away from the kD ¼ 0 axis.

It can be seen in Fig. 3 that the eDUMBO-122 sequence [26],
which was obtained through an experimental optimisation proce-
dure performed at 22 kHz MAS, has a chemical-shift scaling factor
of 0.59, and a slightly poorer dipolar scaling factor than DUMBO-1.
A posteriori, eDUMBO-122 can be seen as a first exploration with
DUMBO sequences of a wider propagator space, made possible
by MAS. It still lies relatively close to the DUMBO-1 sequence,
which operates in the quasi-static regime, as 22 kHz is only a mod-
erate spinning frequency compared to the magnitude of typical
proton-proton dipolar couplings, and because DUMBO-1 was used
as a seed in the optimisation procedure.

Recently, decoupling sequences have been developed within
the DUMBO framework which have large chemical-shift scaling
factors [27]. These sequences, called PLUS-1 and PLUS-large, have
a relatively poor intrinsic line-narrowing efficiency, but make full
use of the effect of ultrafast magic-angle spinning on dipolar cou-
plings. In Fig. 3, PLUS-1 and PLUS-large can be seen to lie very close
to the maximum value of the chemical-shift scaling factor allowed
for a given dipolar scaling factor. The scaling factor theorem thus
makes it possible to illustrate quantitatively the fact that PLUS-1
works well outside the quasi-static regime, and the experimental
optimisation procedure was efficient at finding an appropriate
compromise between dipolar scaling factor and chemical-shift
scaling factor for a given spinning frequency.

It can be noted that in the limit of infinitely fast spinning, per-
fect line-narrowing is achieved without any rf irradiation. This sit-
uation is indicated in Fig. 3 as the point kD ¼ kCS ¼ 1.
6. Conclusion

We have introduced and derived a relationship between the
dipolar and the chemical-shift scaling factor of a cyclic rf pulse se-
quence. This scaling factor theorem imposes constraints on the
development of homonuclear dipolar decoupling strategies, and
we have illustrated these constraints with numerical calculations
of dipolar and chemical-shift scaling factors for randomly gener-
ated pulse sequences, and with the analysis of existing decoupling
sequences. The maximum value of the chemical-shift scaling factor
for pulse sequences that achieves perfect decoupling for static sol-
ids is a special case of the theorem. For homonuclear dipolar
decoupling under magic-angle spinning, the scaling factor theorem
provides a criterion to identify and develop decoupling sequences
that work outside the quasi-static regime.
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